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Early Universe Quantum Processes in BEC
Collapse Experiments

E. A. Calzetta1 and B. L. Hu2,3

We show that in the collapse of a Bose–Einstein condensate (BEC)4 certain processes
involved and mechanisms at work share a common origin with corresponding quantum
field processes in the early universe such as particle creation, structure formation, and
spinodal instability. Phenomena associated with the controlled BEC collapse observed
in the experiment of Donley et al. (Donley, E., et al. (2001), Nature 412, 295; Claussen,
N. (2003), PhD Thesis, University of Colorado; Claussen, N., et al. (2003), Physical
Review A 67, 060701(R))(they call it “Bose–Nova,” see also Chin, J., Vogels, J., and
Ketterle, W. (2003), Physical Review Letters 90, 160405) such as the appearance of
bursts and jets can be explained as a consequence of the squeezing and amplification
of quantum fluctuations above the condensate by the dynamics of the condensate. Us-
ing the physical insight gained in depicting these cosmological processes, our analysis
of the changing amplitude and particle contents of quantum excitations in these BEC
dynamics provides excellent quantitative fits with the experimental data on the scaling
behavior of the collapse time and the amount of particles emitted in the jets. Because
of the coherence properties of BEC and the high degree of control and measurement
precision in atomic and optical systems, we see great potential in the design of table-
top experiments for testing out general ideas and specific (quantum field) processes
in the early universe, thus opening up the possibility for implementing “laboratory
cosmology.” 5
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1. THEORETICAL COSMOLOGY IN RELATION TO GENERAL
RELATIVITY, PARTICLE AND, CONDENSED MATTER PHYSICS

For the last half a century the study of theoretical cosmology and high energy
astrophysics has relied largely on general relativity and particle physics, while
modern and contemporary cosmological experiments are the fuse and the fuel of
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these activities. We witness the inception of nuclear astrophysics in the 1950s,
leading to the highly successful theories of neutron stars, and particle astrophysics
in the 1960s exemplified by the highly successful theory of nucleosynthesis which
helped to establish the standard model in cosmology. Establishment of quantum
field theory in curved spacetime (Birrell and Davies, 1982) in the 1970s laid
the foundation for the study of quantum field processes in strong gravity, such as
cosmological particle creation in the very early universe (Parker, 1969; Schwinger,
1951; Zel’dovich, 1970) and Hawking radiation in black holes (Hawking, 1974,
1975) (note these two processes contain very different physics). This pushed the
frontiers of theoretical inquiries in leaps, back to the period after the Planck time.
The inflationary cosmology (Guth, 1981) of the 1980s also ushered in ideas of
particle physics and quantum field theory, such as the decay of the false vacuum
and the capability of vacuum energies driving the universe into ultrafast expansion,
with scenarios radically different from the standard model.

This side of the story on the progress of modern cosmology with the help
of gravitation theory and particle physics is well-known. What is perhaps lesser
known or appreciated is the importance of ideas and techniques from condense
matter physics and statistical mechanics in the study of cosmology of the early
universe. We have seen the relevance of statistical mechanics, kinetic theory,
stochastic processes and many-body dynamics in classical astronomy and physical
cosmology (see, e.g., Peebles, 1993). Here we want to emphasize the importance of
ideas from condensed matter physics in conjunction with quantum field theory for
treating early universe quantum processes, which is believed to have played a fun-
damental role in determining how spacetime and matter existing in different forms
and states interplay, transform and evolve. The importance of viewing cosmology
in the light of condensed matter physics, in terms of taking the correct viewpoints to
ask the right questions, and approaches to understand the processes, has been called
to our attention a long time ago (see, e.g., Hu, 1988). There were also proposals to
study cosmological defect formation in helium experiments and to view cosmol-
ogy as a critical phenomenon (Smolin, 1995; Zurek, 1996). Similar efforts aim
to identify analogs of full cosmological models (Fedichev and Fischer, 2004a,b).
A recent monograph is devoted to the unity of forces at work in He3 droplets
(Volovik, 2003). It should also be mentioned that the proposal of sonic black holes
(Jacobson, 1991, 1994; Unruh, 1981, 1995) was perhaps the first analog model in
black hole physics which stimulated recent activities in finding similar processes
in fluids and condensed matter systems in the so-called analog gravity program
(Barcelo et al., 2003, 2001, 2000; Garay et al., 2000; Schützhold and Unruh, 2000).

2. LABORATORY COSMOLOGY

Here we propose using the Bose–Einstein Condensate (BEC) and its dy-
namics as another useful venue to “observe” and probe into some fundamental
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cosmological processes in the early universe. Specifically, we analyze the experi-
ment performed by Donley et al. (2001); Claussen (2003); Claussen et al. (2003)
on the controlled collapse of a BEC and identify the processes and mechanisms
at work which are responsible for vacuum particle creation (Schwinger, 1951;
Parker, 1969; Zel’dovich, 1970), structure formation (Bardeen, 1980; Mukhanov
et al., 1992) and spinodal instability (quenching) in phase transition (Calzetta,
1989; Cooper et al., 1995) in the early universe. The collapsing BEC is the time-
reverse scenario of an expanding universe and the condensate plays a similar role
as the vacuum in quantum field theory in curved spacetime. One can understand
the production of atoms in the form of jets and bursts as the result of paramet-
ric amplification of vacuum fluctuations by the condensate dynamics. This is the
same mechanism as cosmological particle creation from the vacuum, which is
believed to be copious near the Planck time and during preheating after inflation
(Charters et al., 2005; Chung et al., 2000; Fujisaki et al., 1996; Kofman et al.,
1994, 1997; Ramsey and Hu, 1997; Shtanov et al., 1995). Some basic ideas com-
mon to cosmological theories like “modes freeze when they grow outside of the
horizon” can be used to explain the special behavior of jets and bursts ejected from
the collapsing BEC. Finally the waiting time before a BEC starts to collapse obeys
a scaling rule which can be derived from simple principles of spinodal instability
in critical phenomena. These examples clearly indicate the great potential of a
new field of research which we may call “laboratory cosmology,” with tabletop
experiments designed to test the workings of specific physical mechanisms in
specific cosmological processes.

3. BEC COLLAPSE EXPERIMENTS

In the experiment described by Donley et al. (2001); Claussen (2003);
Claussen et al. (2003), a Bose–Einstein condensate (BEC) in a cold (3nK) gas
of Rubidium atoms is rendered unstable by a sudden inversion of the sign of
the interaction between atoms. This is done by altering the binding energy at
Feshbach resonance with an external magnetic field. After a waiting time tcollapse,

the condensate implodes, and a fraction of the condensate atoms are seen to os-
cillate within the magnetic trap which contains the gas. These atoms are said to
belong to a “burst.” After a time τevolve the interaction is suddenly turned off. For
a certain range of values of τevolve, new emissions of atoms from the condensate
are observed. They are called “jets.” Jets are distinct from bursts: they are colder,
weaker, and have a characteristic disk-like shape.6

6 We call attention to the distinction between the “Bose–Nova” (Donley et al., 2001; Claussen, 2003;
Claussen et al., 2003) experiment studied here and other BEC collapse experiments (Claussen et al.,
2002; Cornish et al., 2000; Donley et al., 2002; Roberts et al., 1998). At magnetic fields around 160G,
where the effective scattering length is of the order of 500a0 (and positive)(a0 = 0.529 ×10−10 m
is the Bohr radius) it is possible to observe oscillations between the usual atomic condensate and
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4. THE MODEL

The model is based on the Hamiltonian operator for N interacting atoms
with mass M in a trap potential V (r) = (ω2

zz
2 + ω2

ρρ
2)/2, with radial ρ and

longitudinal z coordinates measured in units7 of aho, where aho is a characteristic
length of the trap, with associated (dimensionless) frequencies ωz = ωaxial/ω ∼
1/2 and ωρ = ωradial/ω ∼ √

2. The interaction is assumed to be short ranged. We
introduce a dimensionless field operator � (r) ≡ a

−3/2
ho � (x), and a dimensionless

coupling constant u = (hωa3
ho)−1U = 4π (a/aho).

� obeys the equation of motion �̇ = i[Ĥ ,�] and satisfies the equal
time commutation relations [� (t, r) , �†(t, r′)] = δ(3)(r − r′). We decompose the
Heisenberg operator � = �(r, t) + ψ(r, t) into a c-number condensate amplitude
� and a q-number noncondensate amplitude ψ , consisting of the fluctuations or
excitations.

One crucial point of our analysis is that we shall focus on the evolution of
the fluctuations for a given evolution of the condensate (as extracted from the
experiments); in field theory terms, we shall work within the test field approxima-
tion. It is fair to say that a full theoretical account of the Bose–Nova experiment,
describing the evolution of both condensate and fluctuations, does not exist. All
we can say with any certainty is that we face here a strong back reaction regime,
beyond the Hartree–Fock–Bogoliubov approximation (Wüster et al., 2004).

In contradistinction, the dynamics of the fluctuations alone may be described,
at least in the early stages of the experiment, by a simple Bogoliubov approximation
(Andersen, 2004). We obtain the equation of motion for the fluctuation field
by subtracting from the full Heisenberg equation the Gross–Pitaievsky equation

the molecular state (Claussen et al., 2002; Donley et al., 2002) with a frequency of oscillations
of hundreds of KHz Kokkelmans and Holland (2002); Mackie et al. (2002, 2003). By contrast, in
the “Bose–Nova” experiment (Donley et al., 2001; Claussen, 2003; Claussen et al., 2003) typical
fields were around 167G, the scattering length was only tens of Bohr radii (and negative) and the
frequency of atom—molecule oscillations may be estimated as well over 10 MHz (Kokkelmans, S.
Private communication). While coherent resonance between the atoms and the molecules is expected
to exist for all of these experiments, and has been shown to play an important role in the outcomes
of some (Kokkelmans, S. Private communication), we deem it unlikely that it plays a dominant role
in this experiment other than renormalizing the scattering length (for details, see Calzetta and Hu,
2002). Indeed no oscillations are reported in the original experimental paper. Instead, as this note
shows, the primary mechanism for the Bose–Nova phenomena is the parametric amplification of
quantum fluctuations by the condensate dynamics, resulting in bursts and jets as particle production
from (the squeezing of) the vacuum. Recent numerical simulations (Savage et al., 2003) and rigorous
theoretical investigations (Duine and Stoof, 2003) indicating the inadequacy of mean field theory
seem to corroborate this view.

7 We use a sign convention such that the effective coupling constant is positive for an attractive
interaction, and a system of units where the length aho, time tho, and energy scale Eho = hω =
Mω2a2

ho are defined with reference to the average frequency ω. We work with units such that these
three scales take the value 1.



Early Universe Quantum Processes in BEC Collapse Experiments 1695

(GPE) for �. We next parametrize the wave functions as � = �0 e−i	, ψ =
ψ0 e−i	, where �0 and 	 are real. During the early stages of evolution, we may
regard the condensate density as time independent, and the condensate phase as
homogeneous, �0 = �0 (r) , 	 = 	 (t). We may then write the equation for the
fluctuation field [

i
∂

∂t
− H + E0

]
ψ0 + u�2

0(ψ0 + ψ
†
0 ) = 0 (1)

where E0 = 1
2 (ωz + 2ωρ). As it is well known, this approximation is both “gap-

less” and “conserving” (Griffin, 1996; Hohenberg and Martin, 1965; Ivanov et al.,
2005; Shi and Griffin, 1998).

To solve equation (1)8 we decompose ψ0 into a self-adjoint and an antiadjoint
part ψ0 = ξ + iη, each part satisfying an equation

∂ξ

∂t
= [H − E0] η (2)

∂η

∂t
+ [

H − E0 − 2u�2
0

]
ξ = 0. (3)

Since the trap Hamiltonian is time-independent, we have

∂2ξ

∂t2
+ [H − E0] Heffξ = 0. (4)

Here Heff = H − E0 − 2u�2
0. To have an unstable condensate it is necessary that

at least one of the eigenvalues of Heff is negative; the boundary of stability occurs
when the lowest eigenvalue is exactly zero.

One further consideration is that we are interested in the part of the fluctuation
field which remains orthogonal to the condensate. In the full theory, the condensate
is the eigenfunction of the one-body density matrix with the largest (macroscopic)
eigenvalue, and the non-condensate is built out of the other eigenstates (Penrose
and Onsager, 1956). Since the one-body density matrix is Hermitian, they must be
orthogonal. The ground state of Heff is certainly not orthogonal to the condensate,
since neither have nodes. Observe that within our approximations, the nonconden-
sate wave function is equivalent, up to a normalization, to the phonon operator in
the particle-conserving formalism (Castin and Dum, 1997, 1998; Girardeau and
Arnowitt, 1959; Gardiner, 1997; Gardiner et al., 2000; Idziaszek, 2004; Morgan,
2003).

8 The squeezing of quantum unstable modes and its back reactions on the condensate has been con-
sidered before, e.g., as a damping mechanism for coherent condensate oscillations (Kagan and
Maksimov, 2001), and applied to the collapse of a homogeneous condensate in Yurovsky (2002);
Yurovsky and Ben-Reuven (2003).
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If we adopt the values ωz = 1/2, ωρ = √
2, relevant to the JILA experi-

ment, then instability occurs when κ = N0acrit/aho = 0.51. This result compares
remarkably well with the experimental value κ = 0.55 (Claussen, 2003; Claussen
et al., 2003; Donley et al., 2001; Kokkelmans, S. Private communication), as well
as with the theoretical estimate presented in Gammal et al. (2001). This agreement
may be seen as natural, as the equations we postulate for the fluctuations may be
obtained from the linearization of the GPE. In both calculations, the geometry of
the trap plays a fundamental role.

5. SCALING OF tcollapse AND CRITICAL DYNAMICS

As we have already noted, even for condensate densities above the stability
limit, no particles are lost from the condensate during a waiting time tcollapse.

Experimentally, tcollapse is seen to get very large when the threshold of stability
is approached from above, in a way which closely resembles the critical slowing
down near the transition point characteristic of critical dynamics. In our problem,
the quantity which plays the role of relaxation time is the characteristic time
ε−1 of exponential growth for the first unstable mode. This quantity diverges at
the stability threshold, which in our analogy corresponds to the critical point. By
dimensional analysis, we are led to the estimate tcollapse ∼ ε−1. Close to the critical
point, we find

tcollapse = tcrit

(
a

acr

− 1

)−1/2

(5)

The power law Eq. (5) describes with great accuracy the way tcollapse scales with the
scattering length; the best fit to the experimental data is obtained for tcrit ∼ 5 ms.

In Fig. 1 we plot the scaling law (5) (full line) derived here and compare
it with the experimental data for N0 = 6000 as reported in Donley et al. (2001);
Claussen (2003); Claussen et al. (2003) (small black points), the tNL ∼ (uN0)−1

prediction (suitably scaled) as given in Yurovsky (2002); Trippenbach et al. (2000)
(dashed line) and the results of numerical simulations reported in Saito and Ueda
(2003) (large grey dots). While all three theoretical predictions may be considered
satisfactory, the tNL ∼ (uN0)−1 behavior fails to describe the divergence of tcollapse

as the critical point is approached, and the results of numerical simulations reported
in Saito and Ueda (2003) based on an improved Gross–Pitaevskii equation tend to
be systematically above the experimental results, which may be a further indication
of the quantum origin of this phenomenon (Berman et al., 2002).

We wish to stress that our argument predicts the scaling exponent, but not
the prefactor; even this apparently simple aspect of the Bosenova phenomenology
is surprisingly resilient to theoretical explanation (Wüster et al., 2004). The same
scaling law is found from a different perspective in Métens et al. (2003).



Early Universe Quantum Processes in BEC Collapse Experiments 1697

Fig. 1. We plot the scaling law Eq. (5) (full line) and com-
pare it against the experimental data for N0 = 6000 as
reported in Refs. (Donley et al., 2001; Claussen, 2003)
(small black dots), the tNL ∼ (uN0)−1 prediction (suit-
ably scaled) as given in (Yurovsky, 2002; Claussen, 2003)
(dashed line) and the results of numerical simulations re-
ported in Saito and Ueda (2003) (large grey dots). While
all three theoretical predictions may be considered satisfac-
tory, the tNL ∼ (uN0)−1 fails to describe the divergence of
tcollapse as the critical point is approached. The results of nu-
merical simulations based on an improved Gross-Pitaievskii
equation tend to be systematically above the experimental
results. In a classical instability, the unstable modes must
grow from zero, while in a quantum instability, they are al-
ways seeded by their own zero - point fluctuations, which
speeds up the development of the instability. Therefore, the
fact that numerical simulations tend to overestimate tcollapse

may be a further indication of the quantum origin of the
phenomenon.

6. BURSTS AND JETS AS AMPLIFIED QUANTUM FLUCTUATIONS

We now consider the evolution of quantum fluctuations, treated as a test field
riding on the collapsing condensate whose dynamics is extracted from experiment.
The initial state is defined by the condition that u = 0 for t < 0; we shall take it
to be the particle vacuum |0〉, defined by ψ0 (x, 0) |0〉 = 0 everywhere.

One can introduce a mode decomposition of the ξ operator based on the eigen-
functions of [H − E0] Heff . For short wavelengths λ, since H ∼ λ−2 � 2u�2

0, we
expect these eigenfunctions will approach the trap eigenmodes. The fact that par-
ticles in bursts are seen to oscillate with the trap frequencies (Donley et al., 2001;
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Claussen, 2003; Claussen et al., 2003) also suggests that their dynamics is de-
termined by the trap Hamiltonian. Based on these observations we can assume
a homogeneous condensate 2u�2

0 ∼ κ−1aωzN0 (t), where N0 (t) is the instanta-
neous total number of particles in the condensate. In practice, κ−1 is a measure
of the overlap between the condensate and the excitation modes. Therefore, the
approximation may be improved by adjusting κ according to the range of modes
where it will be applied.

Let N̄0 be the initial number of particles in the condensate, and acr = κ/N̄0

the corresponding critical scattering length. Trap eigenfunctions ψ�n (r) are
labeled by a string of quantum numbers �n = (nz, nx, ny). The eigenval-
ues of the trap Hamiltonian are (with the zero energy already subtracted)
E�n = ωznz + ωρ(nx + ny). There are two kinds of modes, stable (oscillatory, or
thawed) modes if E�n > ( a

acr
)ωz, and unstable (growing, or frozen) modes if not.

In the former case we find that, although we assume vacuum initial conditions,
these modes do not remain empty. Up to tcollapse, when the number of particles in
the condensate is constant, the density

ñ (r, t) = 1

8

(
a

acr

)2

ω2
z

∑
�n

ψ2
�n (r)

sin2 ω�nt
ω2

�n
(6)

(where ω�n =
√

E�n[E�n − ( a
acr

)ωz]) has a constant term and an oscillatory term.

This oscillatory term is responsible for the appearance of “bursts” of par-
ticles oscillating within the trap observed in the Bose–Nova experiment
(Donley et al., 2001; Claussen, 2003; Claussen et al., 2003). In the WKB limit it de-
scribes a swarm of particles moving along classical trajectories in the trap potential.

In the opposite case E�n ≤ ( a
acr

)ωz, the formulae for the density is obtained by

the replacement of ω�n in (6) by iσ�n, thus ω−1
�n sin ω�nt → σ−1

�n sinh σ�nt. Physically
their difference is immense. In the first place, the density is growing exponentially,
but unlike the previous case, there is no oscillatory component, and these particles
do not oscillate in the trap, in the sense described above. These modes come alive
at τevolve (as the scattering length is set to zero), whence they become ordinary trap
modes which oscillate in the trap in the same way as the the burst modes. To the
observer, they appear as a new ejection of particles from the core of the condensate,
which makes up the so-called “jets.” The sudden activation of a frozen mode (we
are borrowing the language and concept of cosmological structure formation) by
turning off the particle–particle interaction may be described as a “thaw.”

Observe that in this picture several conspicuous features of jets become
obvious. Jets may only appear if the turn-off time τevolve is earlier than the formation
time of the remnant. Once the condensate becomes stable again, there are no more
frozen modes to thaw. On the other hand, jets will appear (as observed) for
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Fig. 2. The assumed evolution for N (t) for the calculation
of the number of particles in a jet. For comparison, we have
superimposed the data from Fig. 1b of Donley et al. (2001).
The agreement is satisfactory for our purposes, as we shall
not consider the evolution beyond τevolve = 12% ms nor the
formation of a remnant.

τevolve < tcollapse, when the condensate has not yet shed any particles. Also jets
must be less energetic than bursts, since they are composed of lower modes.

Beyond tcollapse the number of particles in the condensate, and therefore the
instantaneous frequency of the excited modes, becomes time dependent. If we
confine ourselves to the early stages of collapse we may assume nevertheless that
the condensate remains homogeneous. Shifting the origin of time to tcollapse for
simplicity, we write N0 (t) = N̄0exp (−t/τ ) (see Fig. 2).

After expanding in trap eigenmodes we find the two kinds of behavior de-
scribed above. If E�n > ( aωz

ā
), the mode is always oscillatory. If E�n < ( aωz

ā
), the

mode is frozen at tcollapse, but thaws when exp (−t/τ ) ∼ E�nā/aωz. During the
frozen period, the modes are amplified, but they only contribute to bursts after
thawing. If the evolution is interrupted while still frozen, they appear as a jet.
We therefore conclude that the number of particles Njet in a jet at time τevolve is
essentially the total number of particles in all frozen modes at that time. This is
plotted in Fig 3, for N̄0 = 16, 000, ωradial = 110 Hz, ωaxial = 42.7 Hz, a = 36a0,

and κ = 0.46 , and compared to the corresponding results as reported in Donley
et al. (2001); Claussen (2003); Claussen et al. (2003).

We see that the agreement is excellent at early times (up to about 6 ms). For
later times, this model overestimates the jet population. This is due to the fact
that, by not considering the shrinking of the condensate, we are overestimating
the overlap between the condensate and the fluctuations, thus delaying the thaw. It
nevertheless reproduces the overall slope of particle number with τevolve, It should
also be remembered that we are computing the expected number of particles, but
in the highly squeezed state which results from the frozen period, the fluctuations
in particle number are comparable to the mean number itself.
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Fig. 3. The evolution of the number of particles in a jet, for
N̄0 = 16,000, ωradial = 110 Hz, ωaxial = 42.7 Hz, a = 36a0, and
%κ = 0.46 as a function of the time %tevolve, measured in millisec-
onds. The evolution of N (t) in time is depicted in Fig. 4. To pro-
vide a visual reference we have superimposed the data in Fig. 6 of
Donley et al. (2001). The discrepancy between theory and experiment
beyond tevolve = 6 ms may be attributed to an overestimation of the
condensate-noncondensate coupling in neglecting the change in the
shape of the condensate.

It is interesting to observe that it is possible to reproduce the jets within a
theory where the GPE equation is generalized to include an imaginary three-body
recombination loss term (Santos and Shlyapnikov, 2002). We do not regard this
as necessarily a different explanation, but rather as a different way of handling
the divide between condensate and non-condensate (the analogous cosmological
problem would be whether to consider a spin two fluctuation generated during
Inflation as a test field on the cosmological background, or as part of the geometry).
Still agreement with the observed jets is obtained only for certain ranges of
parameters, and it is unclear whether any single parameter set gives a satisfactory
simultaneous account of all aspects of the experiment (Wüster et al., 2004).

In this talk, we have presented a new viewpoint towards understanding the
salient features in the physics of controlled collapse of a Bose–Einstein con-
densate described in the experiment of Donley et al. (2001); Claussen (2003)
Claussen et al. (2003), i.e, in terms of quantum vacuum fluctuations parametri-
cally amplified by the condensate dynamics. Even under a number of simplifying
assumptions, our approach yields results in excellent agreement with experiment,
particularly in the scaling of the waiting time tcollapse and the number of particles
in a jet. A background field separation is assumed here (even though the measured
condensate dynamics contains the backreaction of noncondensates) so that one
can treat these as test-field processes. A theoretical treatment of the fully self-
consistent dynamics of both the condensate and its quantum fluctuations during
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collapse beyond the conventional Hartree–Fock–Bogolubov theory remains a wor-
thy challenge (see, e.g., Rey et al., 2004 and references therein).

If our explanation of the salient features of this experiment is correct one
can think of using this process to create coherent atoms in highly squeezed states
(Rogel-Salazar et al., 2002). This is because the underlying mechanism of para-
metric amplification produces particles from vacuum fluctuations in squeezed
states (Grischuk and Sidorov, 1990; Hu et al., 1994).

Our way of thinking here is influenced by insights from the quantum field
theory of particle creation and structure formation in cosmological spacetimes as
well as theories of spinodal instability in phase transitions. One can conceivably
design experiments with BEC dynamics to test out certain basic mechanisms and
specific features of quantum processes in the early universe, thus opening a new
venue for performing “laboratory cosmology.”
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